U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 11 - 20 of 28 results

Status:
Other

Class (Stereo):
CHEMICAL (ACHIRAL)

Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)

Conditions:

Desoxycorticosterone glucoside was studied in human in 1950th, where was shown, that intravenous injection of this compound did not narrow arterial-cerebral venous glucose difference. In no instance did cerebral venous blood sugar content surpass or approach arterial levels.
Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
US Previously Marketed
Source:
Estrotate by Lakeside (MerrellNational)
(1948)
Source URL:
First approved in 1948
Source:
Estrotate by Lakeside (MerrellNational)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Lorazepam (brand name Ativan) is indicated for the management of anxiety disorders or for the short-term relief of the symptoms of anxiety or anxiety associated with depressive symptoms. Anxiety or tension associated with the stress of everyday life usually does not require treatment with an anxiolytic. Lorazepam binds to an allosteric site on GABA-A receptors, which are pentameric ionotropic receptors in the CNS. Binding potentiates the effects of the inhibitory neurotransmitter GABA, which upon binding opens the chloride channel in the receptor, allowing chloride influx and causing hyperpolarization of the neuron. Studies in healthy volunteers show that in single high doses Ativan (lorazepam) has a tranquilizing action on the central nervous system with no appreciable effect on the respiratory or cardiovascular systems. Ativan (lorazepam) is readily absorbed with an absolute bioavailability of 90 percent. The mean half-life of unconjugated lorazepam in human plasma is about 12 hours and for its major metabolite, lorazepam glucuronide, about 18 hours. At clinically relevant concentrations, lorazepam is approximately 85% bound to plasma proteins. Lorazepam is rapidly conjugated at its 3-hydroxy group into lorazepam glucuronide which is then excreted in the urine. Lorazepam glucuronide has no demonstrable CNS activity in animal. Most adverse reactions to benzodiazepines, including CNS effects and respiratory depression, are dose dependent, with more severe effects occurring with high doses. Paradoxical reactions, including anxiety, excitation, agitation, hostility, aggression, rage, sleep disturbances/insomnia, sexual arousal, and hallucinations may occur. Small decreases in blood pressure and hypotension may occur but are usually not clinically significant, probably being related to the relief of anxiety produced by lorazepam.
Clocortolone (used in form of pivalate prodrug) is a topical glucocorticoid that was approved by FDA for the treatment of corticosteroid-responsive skin disorders. The drug exerts its anti-inflammatory action by binding to glucocorticoid receptor which results in regulation of the expression of proinflammatory cytokines and further antiproliferative, immunosuppressive, and initial vasoconstrictive effects.
Desonide is a topical glucocorticoid which was approved by FDA for the treatment of such conditions as eczema, psoriasis, atopic dermatitis, etc. The exact mechanism of drug action is unknown.
Prednisolone is a synthetic adrenocortical steroid drug with predominantly glucocorticoid properties. Some of these properties reproduce the physiological actions of endogenous glucocorticosteroids, but others do not necessarily reflect any of the adrenal hormones’ normal functions; they are seen only after administration of large therapeutic doses of the drug. The pharmacological effects of prednisolone which are due to its glucocorticoid properties include: promotion of gluconeogenesis; increased deposition of glycogen in the liver; inhibition of the utilization of glucose; anti-insulin activity; increased catabolism of protein; increased lipolysis; stimulation of fat synthesis and storage; increased glomerular filtration rate and resulting increase in urinary excretion of urate (creatinine excretion remains unchanged); and increased calcium excretion. Prednisolone is used to treat certain types of allergies, inflammatory conditions, autoimmune disorders, and cancers. Some of these conditions include adrenocortical insufficiency, high blood calcium, rheumatoid arthritis, dermatitis, eye inflammation, asthma, and multiple sclerosis.
Estradiol an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. In humans, it is produced primarily by the cyclic ovaries and the placenta. It is also produced by the adipose tissue of men and postmenopausal women. The 17-alpha-isomer of estradiol binds weakly to estrogen receptors (receptors, estrogen) and exhibits little estrogenic activity in estrogen-responsive tissues. Estradiol enters target cells freely (e.g., female organs, breasts, hypothalamus, pituitary) and interacts with a target cell receptor. When the estrogen receptor has bound its ligand it can enter the nucleus of the target cell, and regulate gene transcription which leads to formation of messenger RNA. The mRNA interacts with ribosomes to produce specific proteins that express the effect of estradiol upon the target cell. Estradiol is used for the treatment of urogenital symptoms associated with post-menopausal atrophy of the vagina (such as dryness, burning, pruritus and dyspareunia) and/or the lower urinary tract (urinary urgency and dysuria). Estradiol is marketed under the brand name Climara (among others), indicated for: the treatment of moderate to severe vasomotor symptoms due to menopause, treatment of symptoms of vulvar and vaginal atrophy due to menopause, treatment of hypoestrogenism due to hypogonadism, castration or primary ovarian failure and prevention of postmenopausal osteoporosis.

Showing 11 - 20 of 28 results